Combinatorial Problems in Finite Geometry and Lacunary Polynomials
نویسنده
چکیده
We describe some combinatorial problems in finite projective planes and indicate how Rédei’s theory of lacunary polynomials can be applied to them. 2000 Mathematics Subject Classification: 05.
منابع مشابه
A novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملLacunary Polynomials over Finite Fields Course notes
This is a summary of the course Lacunary Polynomials over Finite Fields, given by Simeon Ball, from the University of London, in March 5-8, 2002, at the Universitat Politècnica de Catalunya (Barcelona). Explanations of Dr. Ball have been complemented with some results of [3] and [4].
متن کاملDegenerating Geometry to Combinatorics : Research Proposal for
A central appeal of algebraic geometry is that its functions are polynomials which can be written down as finite expressions. This makes the theory naturally combinatorial, in that polynomials are made up of a finite number of terms which interact through discrete rules. In practice, however, the operations performed on these polynomials are usually too complex for combinatorial methods to be o...
متن کاملA Triple Lacunary Generating Function for Hermite Polynomials
Some of the classical orthogonal polynomials such as Hermite, Laguerre, Charlier, etc. have been shown to be the generating polynomials for certain combinatorial objects. These combinatorial interpretations are used to prove new identities and generating functions involving these polynomials. In this paper we apply Foata’s approach to generating functions for the Hermite polynomials to obtain a...
متن کاملTropical Combinatorial Nullstellensatz and Sparse Polynomials
Tropical algebra emerges in many fields of mathematics such as algebraic geometry, mathematical physics and combinatorial optimization. In part, its importance is related to the fact that it makes various parameters of mathematical objects computationally accessible. Tropical polynomials play an important role in this, especially for the case of algebraic geometry. On the other hand, many algeb...
متن کامل